Search Results

Documents authored by Davies, Ewan


Document
Track A: Algorithms, Complexity and Games
Approximately Counting Independent Sets of a Given Size in Bounded-Degree Graphs

Authors: Ewan Davies and Will Perkins

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
We determine the computational complexity of approximately counting and sampling independent sets of a given size in bounded-degree graphs. That is, we identify a critical density α_c(Δ) and provide (i) for α < α_c(Δ) randomized polynomial-time algorithms for approximately sampling and counting independent sets of given size at most α n in n-vertex graphs of maximum degree Δ; and (ii) a proof that unless NP=RP, no such algorithms exist for α > α_c(Δ). The critical density is the occupancy fraction of hard core model on the clique K_{Δ+1} at the uniqueness threshold on the infinite Δ-regular tree, giving α_c(Δ) ~ e/(1+e)1/(Δ) as Δ → ∞.

Cite as

Ewan Davies and Will Perkins. Approximately Counting Independent Sets of a Given Size in Bounded-Degree Graphs. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 62:1-62:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{davies_et_al:LIPIcs.ICALP.2021.62,
  author =	{Davies, Ewan and Perkins, Will},
  title =	{{Approximately Counting Independent Sets of a Given Size in Bounded-Degree Graphs}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{62:1--62:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.62},
  URN =		{urn:nbn:de:0030-drops-141310},
  doi =		{10.4230/LIPIcs.ICALP.2021.62},
  annote =	{Keywords: approximate counting, independent sets, Markov chains}
}
Document
Statistical Physics Approaches to Unique Games

Authors: Matthew Coulson, Ewan Davies, Alexandra Kolla, Viresh Patel, and Guus Regts

Published in: LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)


Abstract
We show how two techniques from statistical physics can be adapted to solve a variant of the notorious Unique Games problem, potentially opening new avenues towards the Unique Games Conjecture. The variant, which we call Count Unique Games, is a promise problem in which the "yes" case guarantees a certain number of highly satisfiable assignments to the Unique Games instance. In the standard Unique Games problem, the "yes" case only guarantees at least one such assignment. We exhibit efficient algorithms for Count Unique Games based on approximating a suitable partition function for the Unique Games instance via (i) a zero-free region and polynomial interpolation, and (ii) the cluster expansion. We also show that a modest improvement to the parameters for which we give results would be strong negative evidence for the truth of the Unique Games Conjecture.

Cite as

Matthew Coulson, Ewan Davies, Alexandra Kolla, Viresh Patel, and Guus Regts. Statistical Physics Approaches to Unique Games. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 13:1-13:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{coulson_et_al:LIPIcs.CCC.2020.13,
  author =	{Coulson, Matthew and Davies, Ewan and Kolla, Alexandra and Patel, Viresh and Regts, Guus},
  title =	{{Statistical Physics Approaches to Unique Games}},
  booktitle =	{35th Computational Complexity Conference (CCC 2020)},
  pages =	{13:1--13:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-156-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{169},
  editor =	{Saraf, Shubhangi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.13},
  URN =		{urn:nbn:de:0030-drops-125650},
  doi =		{10.4230/LIPIcs.CCC.2020.13},
  annote =	{Keywords: Unique Games Conjecture, approximation algorithm, Potts model, cluster expansion, polynomial interpolation}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail